A Clinical Drug Interaction Study to Assess the Effect of Vonoprazan on the Pharmacokinetics of Midazolam

Darcy J. Mulford, PhD¹, Philippe Brudi, MD¹, Neila Smith, MD¹, Esha Desai, MS¹, and Carmelo Scarpignato, MD, FRCP, FEBGH, AGAF²

¹Phathom Pharmaceuticals, Inc., Buffalo Grove, IL, USA; ²United Campus of Malta, Msida, Malta

BACKGROUND

- Vonoprazan is a potassium-competitive acid blocker (P-CAB) that is being investigated for the treatment of erosive esophagitis, non-erosive reflux disease and, in combination with antimicrobials, Helicobacter pylori infection.¹⁻⁴
- Clearance of vonoprazan occurs primarily by metabolism and to a minor extent by renal elimination.⁵
 - Vonoprazan is metabolized to inactive metabolites via multiple pathways by a combination of cytochrome P450 (CYP) isoforms along with sulfo- and glucuronosyl transferases.
- Oxidative metabolism is mainly catalyzed by CYP3A4/5 and, to a lesser extent, by CYP2B6, CYP2C19, and CYP2D6.
- ▶ In vitro, vonoprazan showed mild reversible and time-dependent inhibition of CYP3A.⁶
- CYP3A is involved in the metabolism of many drugs⁷ and mechanistic static modelling indicated that vonoprazan may result in the inhibition of sensitive CYP3A substrates *in vivo*.⁶
- Therefore, it is important to understand the potential for vonoprazan to inhibit CYP3A in vivo following therapeutic doses.

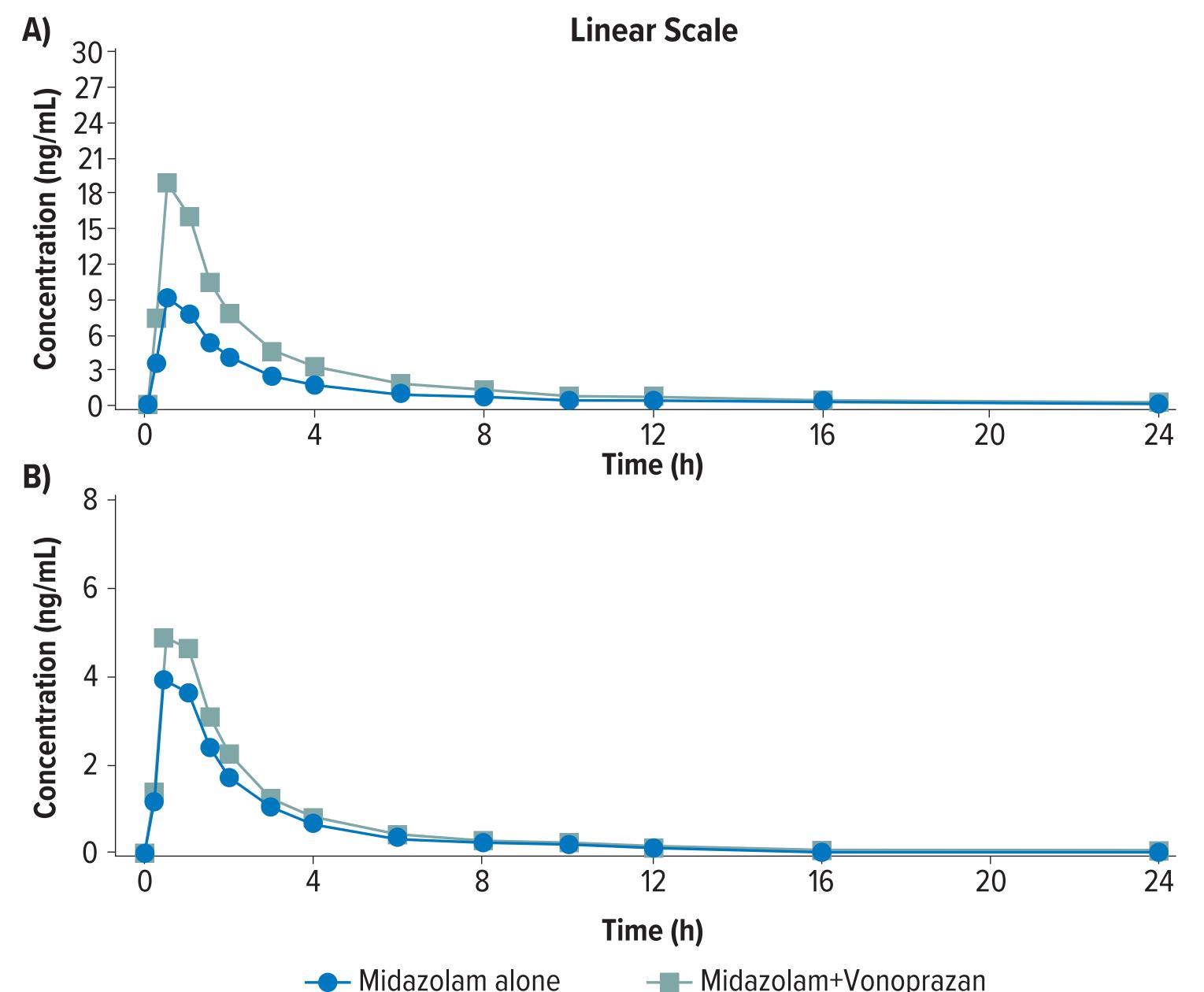
OBJECTIVES

To investigate the effects of vonoprazan on the pharmacokinetics of midazolam, a sensitive CYP3A index substrate (NCT04545944).

RESULTS

Participant disposition, demographics, and characteristics

- Of 32 participants screened, 20 entered the study.
- All 20 participants completed the study and were included in the safety and pharmacokinetic populations.
- > The mean age of participants was 32.3 years and the mean body mass index was 25.5 kg/m² (**Table 1**).
- \blacktriangleright The majority were men (12/20; 60%, **Table 1**).


Table 1. Baseline Characteristics and Demographics

Characteristic	Study population (N=20)
Age, mean (SD)	32.3 (7.2)
Sex, n (%)	
Male	12 (60.0)
Female	8 (40.0)
Race, n (%)	
White	10 (50.0)
Black or African American	7 (35.0)
Asian	1 (5.0)
Native Hawaiian or Pacific Islander	1 (5.0)
Multi-racial	1 (5.0)
Ethnicity, n (%)	
Latinx	8 (40.0)
Not Latinx	12 (60.0)
BMI, mean (SD)	25.5 (2.3)
BMI, body mass index; SD, standard deviation.	

Plasma concentrations of midazolam and 1-hydroxymidazolam

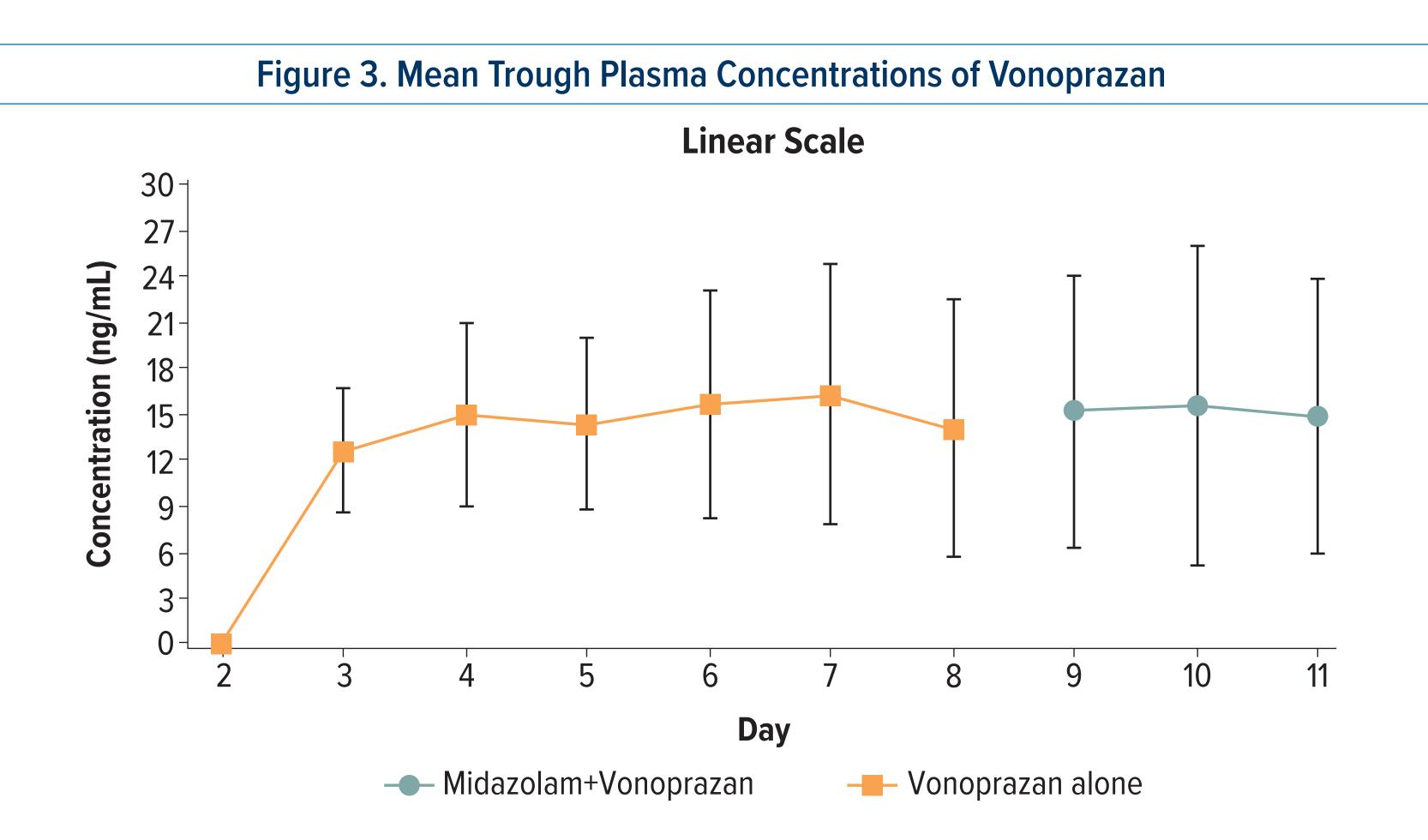

- Mean plasma concentrations of midazolam and its metabolite 1-hydroxymidazolam were greater at all sampling times when midazolam was co-administered with vonoprazan compared with administration of midazolam alone (**Figure 2**).
- Peak mean concentrations of midazolam and 1-hydroxymidazolam were reached within 1 hour of dosing after either treatment.

Figure 2. Mean Plasma Concentrations of A) Midazolam and B) 1-Hydroxymidazolam

Plasma concentrations of vonoprazan

- Steady state plasma concentrations of vonoprazan were achieved after 3 days of 20 mg twice-daily doses of vonoprazan, with mean C_{trough} values of 15.0, 14.3, and 15.7 ng/mL on Days 4, 5, and 6, respectively (Figure 3)
- Trough concentrations of vonoprazan were similar whether administered alone (Days 3-8) or following co-administration with midazolam (Days 9–11).

Effect of vonoprazan on midazolam pharmacokinetics

- Plasma exposure of midazolam increased following coadministration with vonoprazan, as reflected by 1.9-fold increases in C_{max} and AUC values (**Tables 2 and 3**).
- > Plasma exposure of 1-hydroxymidazolam also increased following coadministration with vonoprazan, but to a lesser extent (1.3- to 1.4-fold) than midazolam exposure (**Tables 2 and 3**).
- Elimination of midazolam and 1-hydroxymidazolam was similar when midazolam was administered alone or concomitantly with vonoprazan, as reflected by no meaningful change in $t_{1/2}$ for either.

Table 2. Plasma Pharmacokinetic Parameter Estimates for Midazolam and 1-Hydroxymidazolam

	Treatment					
	Midazolam Alone	Midazolam + Vonoprazan				
Parameter (units)	(N=20)	(N=20)				
Midazolam						
C _{max} (ng/mL)	10.3 (3.61)	20.3 (9.55)				
AUC _(0-t) (ng h/mL)	24.2 (8.8)	50.7 (39.8)				
AUC _(0-inf) (ng h/mL)	25.5 (9.00)	52.3 (39.8)				
t _{max} (h) median (min, max)	0.67 (0.25, 1.00)	0.63 (0.50, 1.00)				
t _{1/2} (h)	6.21 (1.95)	6.58 (1.45)				
1-Hydroxymidazolam						
C _{max} (ng/mL)	4.76 (2.42)	5.59 (2.00)				
AUC _(0-t) (ng h/mL)	9.7 (4.2)	13.1 (5.9)				
AUC _(0-inf) (ng h/mL)	10.5 (4.53)	13.8 (7.08)				
t _{max} (h) median (min, max)	0.75 (0.25, 1.00)	0.75 (0.50, 1.00)				
t _{1/2} (h)	4.54 (1.96)	5.30 (3.16)				

Data are presented as mean (standard deviation) unless otherwise specified.

AUC_{0-inf}, area under the plasma concentration versus time curve from time 0 extrapolated to infinity; AUC_{0-t}, area under the plasma concentration versus time curve from time 0 to the last quantifiable concentration; C_{max}, maximum plasma concentration; t_{1/2}, terminal phase half-life; t_{max}, time to maximum concentration.

Table 3. Statistical Analysis of Plasma Pharmacokinetic Parameter Estimates for Midazolam and 1-Hydroxymidazolam

	LS means			
Parameter (units)	Midazolam alone	Midazolam + vonoprazan	Mean ratio (90)% CI)
Midazolam			Decreased Increased	
C _{max} (ng/mL)	9.7	18.8	├●	1.93 (1.61, 2.33)
AUC _(0-t) (ng h/mL)	22.7	43.7	├──●──┤	1.92 (1.53, 2.42)
AUC _(0-inf) (ng h/mL)	24.0	45.4	├──●──┤	1.89 (1.51, 2.37)
1-Hydroxymidazolam				
C _{max} (ng/mL)	4.2	5.2	⊢	1.25 (0.98, 1.59)
AUC _(0-t) (ng h/mL)	8.9	12.2		1.37 (1.11, 1.70)
AUC _(0-inf) (ng h/mL)	9.6	12.6	0 1 2 3	1.31 (1.03, 1.67)

AUC_{0-inf}, area under the plasma concentration versus time curve from time 0 extrapolated to infinity; AUC_{0-t}, area under the plasma concentration versus time curve from time 0 to the last quantifiable concentration; C_{max} , maximum concentration; LS, least square.

Safety

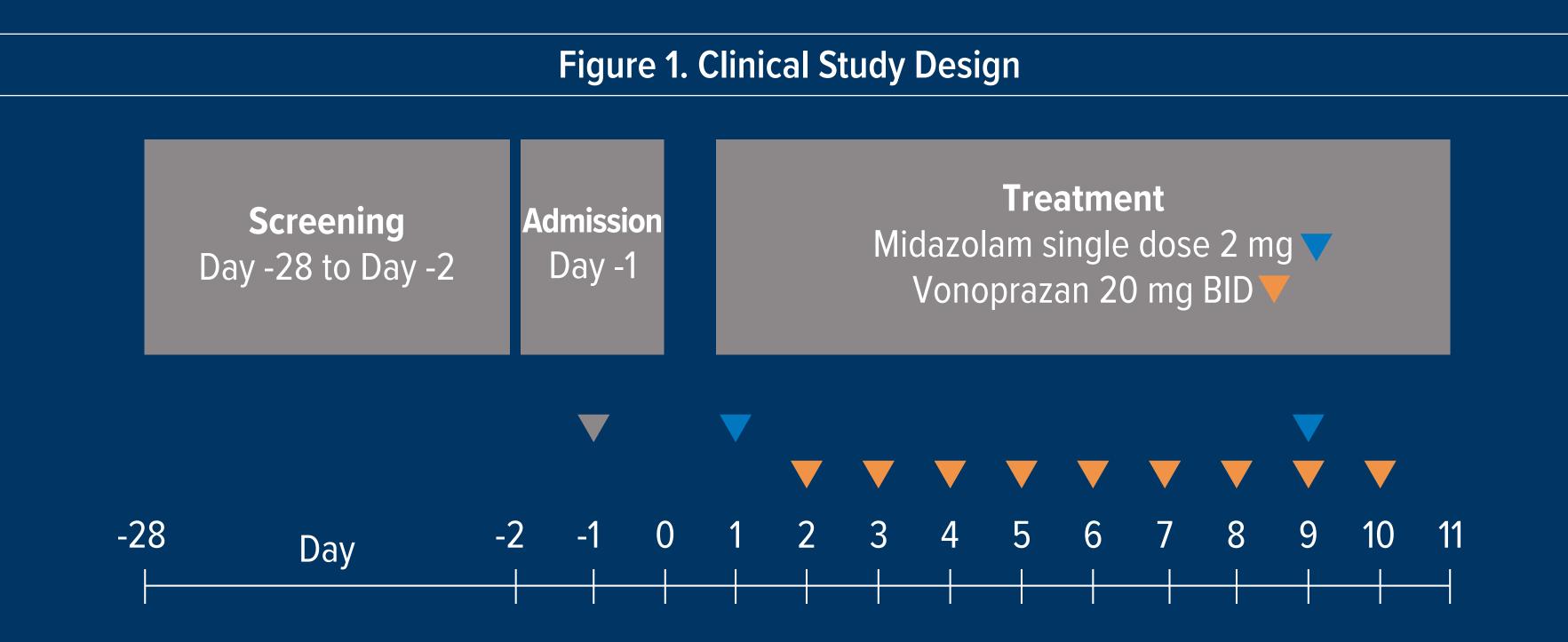
- Overall, 6 treatment-emergent adverse events (TEAEs) were reported in 4 subjects after receiving vonoprazan alone; 3 TEAEs were reported in 2 subjects after vonoprazan and midazolam coadministration. All TEAEs were mild in severity and resolved by the end of the study.
- Two TEAEs (somnolence and feeling drunk, in the same patient) were reported to be related to midazolam after vonoprazan and midazolam co-administration; no adverse events were considered related to vonoprazan.
- There were no deaths or serious TEAEs reported during the study, and no subjects discontinued from the study due to a TEAE.

CONCLUSIONS

- Vonoprazan was a weak inhibitor of CYP3A4 in vivo, with a slightly less than two-fold increase in plasma exposure of midazolam after repeated doses of vonoprazan compared to when midazolam was given alone.
- These data suggest that plasma concentrations of other drugs that are primarily metabolized by CYP3A4 may increase when administered concomitantly with vonoprazan.
- Lower doses of sensitive CYP3A4 substrates with a narrow therapeutic index should be used when administered concomitantly with vonoprazan.
- Vonoprazan and midazolam were well tolerated when administered alone or concomitantly.

- Blood samples to measure vonoprazan trough plasma concentrations were collected pre-dose on Days 2–11.
- The effect of vonoprazan on the pharmacokinetics of midazolam was assessed using a linear mixed model performed on the natural log transformed values of C_{max} , AUC_{0-t} and AUC_{0-inf} for midazolam and 1-hydroxymidazolam.

- 7. Food and Drug Administration: Drug Development and Drug Interactions | Table of Substrates, Inhibitors and Inducers. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions- table-substratesinhibitors-and-inducers. Accessed March, 2022


Acknowledgements

Meeting details

METHODS

This was a Phase 1, open-label, clinical drug-drug interaction study.

- Healthy volunteers were given a single oral dose of midazolam 2 mg (syrup) on Day 1 and again on Day 9, and vonoprazan 20 mg twice daily (oral tablets) on Days 2 through 10 (Figure 1).
- Blood samples to measure midazolam and 1-hydroxymidazolam plasma concentrations were collected pre-dose and at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, and 24 hours following midazolam dosing on Days 1 and 9.
- Two additional blood samples were collected on Day 9 at 36 and 48 hours after dosing.
- \blacktriangleright PK parameters (AUC_{0-t}, AUC_{0-inf}, C_{max}, t_{max}, and t_{1/2}) for midazolam and 1-hydroxymidazolam were calculated using noncompartmental analysis.
- Treatment was the fixed effect and subject was the random effect.
- Treatment differences were expressed using point estimates and 90% confidence intervals with no effect boundaries of 0.8–1.25.

References

- 1. ClinicalTrials.gov. Comparison of Vonoprazan to Esomeprazole in Participants With Symptomatic GERD Who Responded Partially to a High Dose of Proton Pump Inhibitor (PPI): NCT02743949.
- 2. Clinical Trials.gov. Efficacy and Safety of Vonoprazan Compared to Lansoprazole in Participants with Helicobacter Pylori Infection: NCT04167670.
- 3. ClinicalTrials.gov. Efficacy and Safety of Vonoprazan Compared to Lansoprazole in Participants With Erosive Esophagitis: NCT04124926.
- 4. ClinicalTrials.gov. A Study to Evaluate the Efficacy and Safety of Vonoprazan Compared to Placebo in Participants With Symptomatic Non-Erosive Gastroesophageal Reflux Disease: NCT04799158.
- 5. Yamasaki H, et al. *Xenobiotica*. 2017;47(12):1027-1034
- 6. Nishihara M, et al. *Eur J Drug Metab Pharmacokinet*. 2019;44(2):217-227
- Medical writing support was provided by Abigail Killen-Devine Ph.D. and editorial support by Kyle Lambe, both of Synergy Medical Communications, funded by Phathom Pharmaceuticals in accordance with Good Publications Practice (GPP3) guidelines.

Conflicts of interest

- DJM, PB, NS and ED are employed by Phathom Pharmaceuticals. NS and ED also report stock/options in Phathom Pharmaceuticals. **CS** discloses compensation from Phathom Pharmaceuticals as a consultant, advisory board member and speaker.
- Presented at the Digestive Disease Week 2022[®], May 21–24, San Diego, CA.